

NTLJS3180PZ

Power MOSFET

-20 V, -7.7 A, μ Cool™ Single P-Channel, ESD, 2x2 mm WDFN Package

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest $R_{DS(on)}$ Solution in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- ESD Protected
- This is a Pb-Free Device

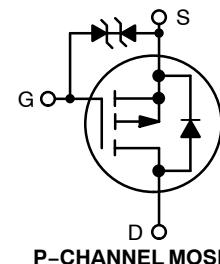
Applications

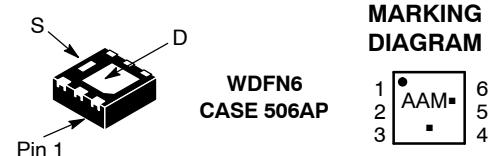
- Optimized for Battery and Load Management Applications in Portable Equipment
- High Side Load Switch
- Battery Switch
- DC-DC Converters

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Parameter		Symbol	Value	Unit
Drain-to-Source Voltage		V_{DSS}	-20	V
Gate-to-Source Voltage		V_{GS}	± 8.0	V
Continuous Drain Current (Note 1)	Steady State	I_D	-5.9	A
	$T_A = 85^\circ\text{C}$		-4.2	
	$t \leq 5\text{ s}$		-7.7	
Power Dissipation (Note 1)	Steady State	P_D	1.9	W
	$t \leq 5\text{ s}$		3.3	
Continuous Drain Current (Note 2)	Steady State	I_D	-3.5	A
			-2.5	
Power Dissipation (Note 2)	$T_A = 25^\circ\text{C}$	P_D	0.7	W
Pulsed Drain Current	$t_p = 10\text{ }\mu\text{s}$	I_{DM}	-23	A
Operating Junction and Storage Temperature		T_J, T_{STG}	-55 to 150	°C
Source Current (Body Diode) (Note 2)		I_S	-2.8	A
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)		T_L	260	°C

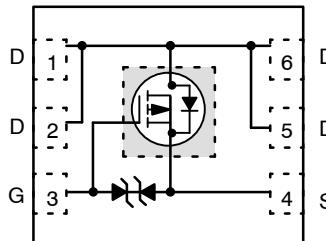
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
2. Surface Mounted on FR4 Board using the minimum recommended pad size, (30 mm², 2 oz Cu).


ON Semiconductor®

<http://onsemi.com>

$V_{(BR)DSS}$	$R_{DS(on)}$ MAX	I_D MAX
-20 V	38 mΩ @ -4.5 V	-7.7 A
	50 mΩ @ -2.5 V	
	75 mΩ @ -1.8 V	
	200 mΩ @ -1.5 V	



P-CHANNEL MOSFET

AA = Specific Device Code
M = Date Code
■ = Pb-Free Package
(Note: Microdot may be in either location)

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Package	Shipping [†]
NTLJS3180PZTAG	WDFN6	3000/Tape & Reel
NTLJS3180PZTBG	(Pb-Free)	

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient – Steady State (Note 3)	$R_{\theta JA}$	65	$^{\circ}\text{C/W}$
Junction-to-Ambient – Steady State Min Pad (Note 4)	$R_{\theta JA}$	180	
Junction-to-Ambient – $t \leq 5$ s (Note 3)	$R_{\theta JA}$	38	

3. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).

4. Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).MOSFET ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}\text{C}$ unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit
-----------	--------	-----------------	-----	-----	-----	------

OFF CHARACTERISTICS

Drain-to-Source Breakdown Voltage	$V_{(\text{BR})\text{DSS}}$	$V_{\text{GS}} = 0$ V, $I_D = -250$ μA	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	$V_{(\text{BR})\text{DSS}/T_J}$	$I_D = -250$ μA , Ref to 25°C		-5.0		$\text{mV}/^{\circ}\text{C}$
Zero Gate Voltage Drain Current	I_{DSS}	$V_{\text{DS}} = -16$ V, $V_{\text{GS}} = 0$ V	$T_J = 25^{\circ}\text{C}$		-1.0	μA
			$T_J = 85^{\circ}\text{C}$		-10	μA
Gate-to-Source Leakage Current	I_{GSS}	$V_{\text{DS}} = 0$ V, $V_{\text{GS}} = \pm 8.0$ V			± 10	μA

ON CHARACTERISTICS (Note 5)

Gate Threshold Voltage	$V_{\text{GS}(\text{TH})}$	$V_{\text{GS}} = V_{\text{DS}}, I_D = -250$ μA	-0.45		-1.0	V
Gate Threshold Temperature Coefficient	$V_{\text{GS}(\text{TH})/T_J}$			3.0		$\text{mV}/^{\circ}\text{C}$
Drain-to-Source On-Resistance	$R_{\text{DS}(\text{on})}$	$V_{\text{GS}} = -4.5$ V, $I_D = -3.0$ A		30	38	$\text{m}\Omega$
		$V_{\text{GS}} = -2.5$ V, $I_D = -3.0$ A		40	50	
		$V_{\text{GS}} = -1.8$ V, $I_D = -2.0$ A		55	75	
		$V_{\text{GS}} = -1.5$ V, $I_D = -1.8$ A		85	200	
Forward Transconductance	g_{FS}	$V_{\text{DS}} = -16$ V, $I_D = -3.0$ A		7.7		S

CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	C_{ISS}	$V_{\text{GS}} = 0$ V, $f = 1.0$ MHz, $V_{\text{DS}} = -16$ V		1100		pF
Output Capacitance	C_{OSS}			180		
Reverse Transfer Capacitance	C_{RSS}			130		
Total Gate Charge	$Q_{\text{G}(\text{TOT})}$	$V_{\text{GS}} = -4.5$ V, $V_{\text{DS}} = -16$ V, $I_D = -3.0$ A		13	19.5	nC
Threshold Gate Charge	$Q_{\text{G}(\text{TH})}$			0.5		
Gate-to-Source Charge	Q_{GS}			1.4		
Gate-to-Drain Charge	Q_{GD}			4.2		

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	$t_{\text{d}(\text{ON})}$	$V_{\text{GS}} = -4.5$ V, $V_{\text{DD}} = -10$ V, $I_D = -3.0$ A, $R_{\text{G}} = 3.0$ Ω		8.0		ns
Rise Time	t_r			15		
Turn-Off Delay Time	$t_{\text{d}(\text{OFF})}$			70		
Fall Time	t_f			67		

DRAIN-SOURCE DIODE CHARACTERISTICS

Forward Recovery Voltage	V_{SD}	$V_{\text{GS}} = 0$ V, $I_S = -2.0$ A	$T_J = 25^{\circ}\text{C}$		-0.7	-1.0	V
			$T_J = 125^{\circ}\text{C}$		-0.6		
Reverse Recovery Time	t_{RR}	$V_{\text{GS}} = 0$ V, $d_{\text{ISD}}/dt = 100$ A/ μs , $I_S = -2.0$ A			60		ns
Charge Time	t_a				16		
Discharge Time	t_b				44		
Reverse Recovery Time	Q_{RR}				41		nC

5. Pulse Test: Pulse Width ≤ 300 μs , Duty Cycle $\leq 2\%$.

6. Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES ($T_J = 25^\circ\text{C}$ unless otherwise noted)

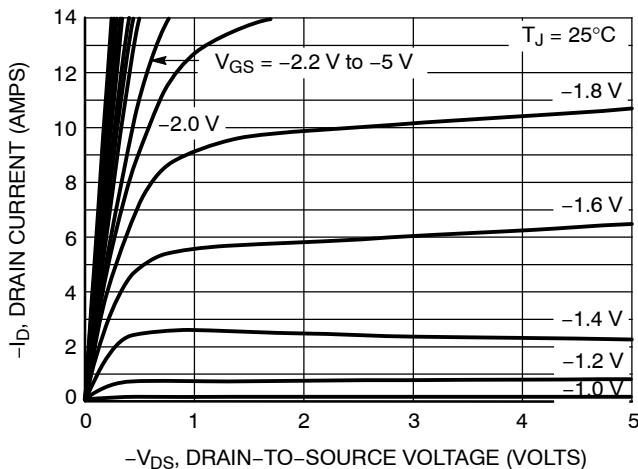


Figure 1. On-Region Characteristics

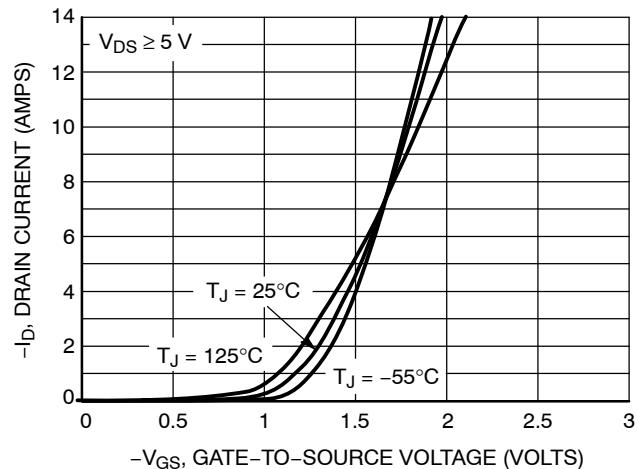


Figure 2. Transfer Characteristics

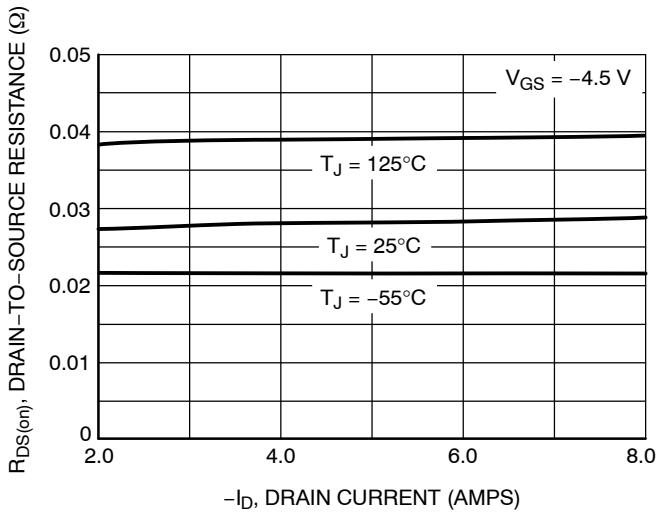


Figure 3. On-Resistance versus Drain Current

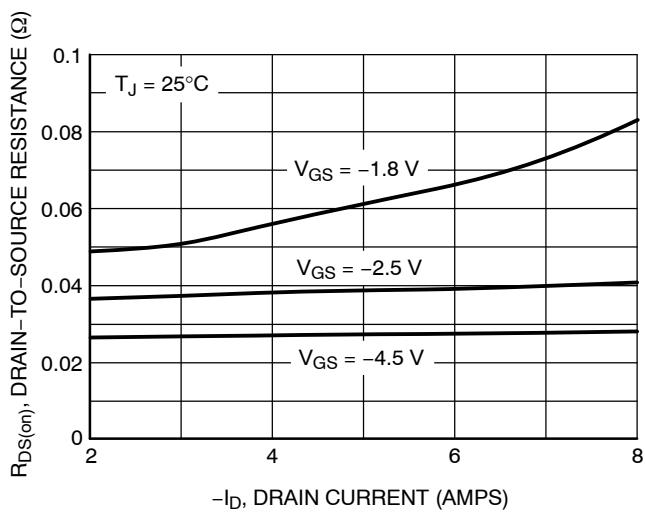


Figure 4. On-Resistance versus Drain Current and Gate Voltage

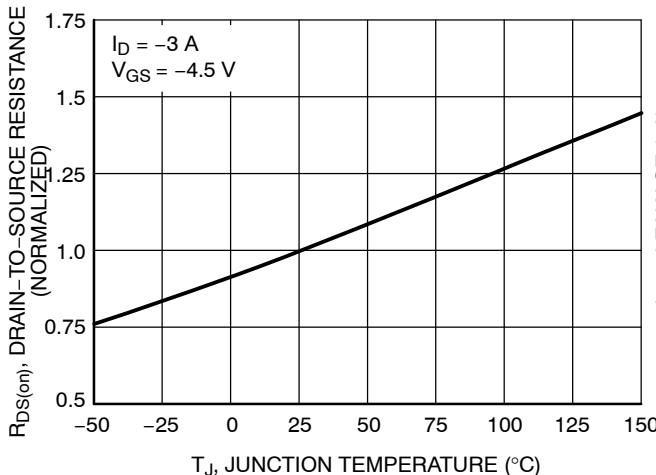


Figure 5. On-Resistance Variation with Temperature

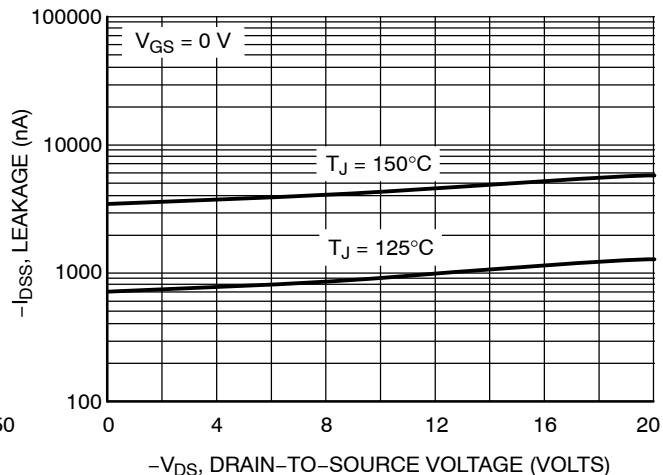
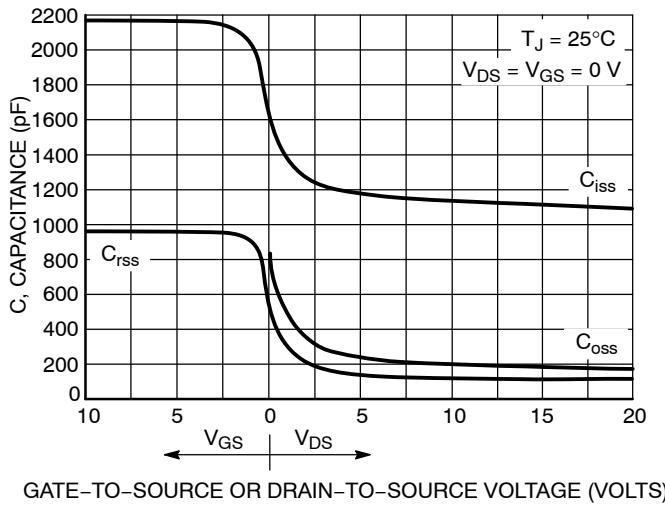



Figure 6. Drain-to-Source Leakage Current versus Voltage

NTLJS3180PZ

TYPICAL PERFORMANCE CURVES ($T_J = 25^\circ\text{C}$ unless otherwise noted)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (VOLTS)

Figure 7. Capacitance Variation

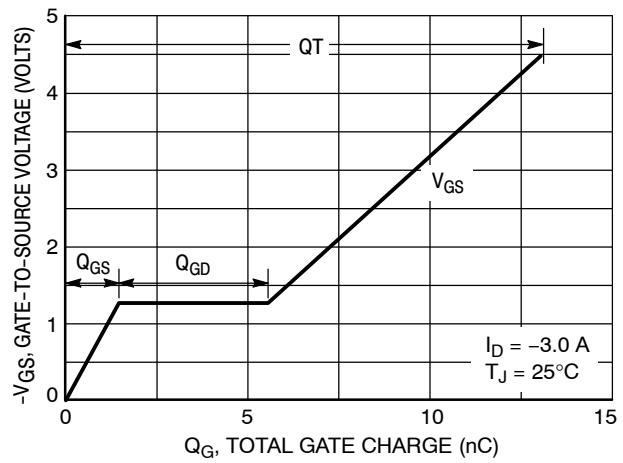


Figure 8. Gate-To-Source and Drain-To-Source Voltage versus Total Charge

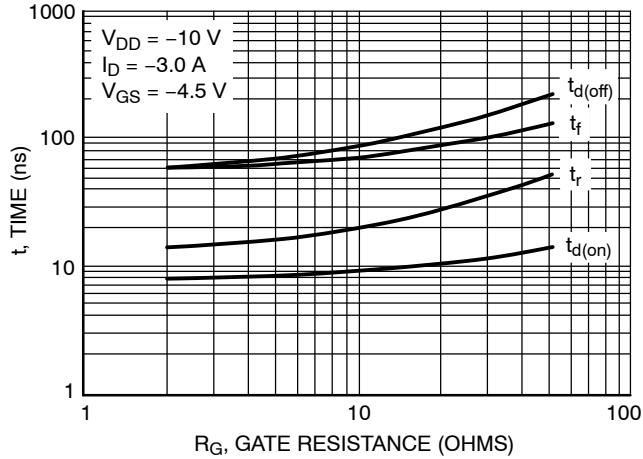


Figure 9. Resistive Switching Time Variation versus Gate Resistance



Figure 10. Diode Forward Voltage versus Current

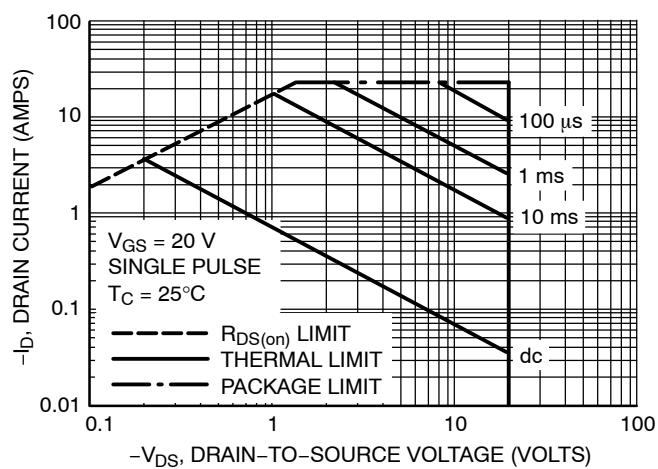


Figure 11. Maximum Rated Forward Biased Safe Operating Area

NTLJS3180PZ

TYPICAL PERFORMANCE CURVES ($T_J = 25^\circ\text{C}$ unless otherwise noted)

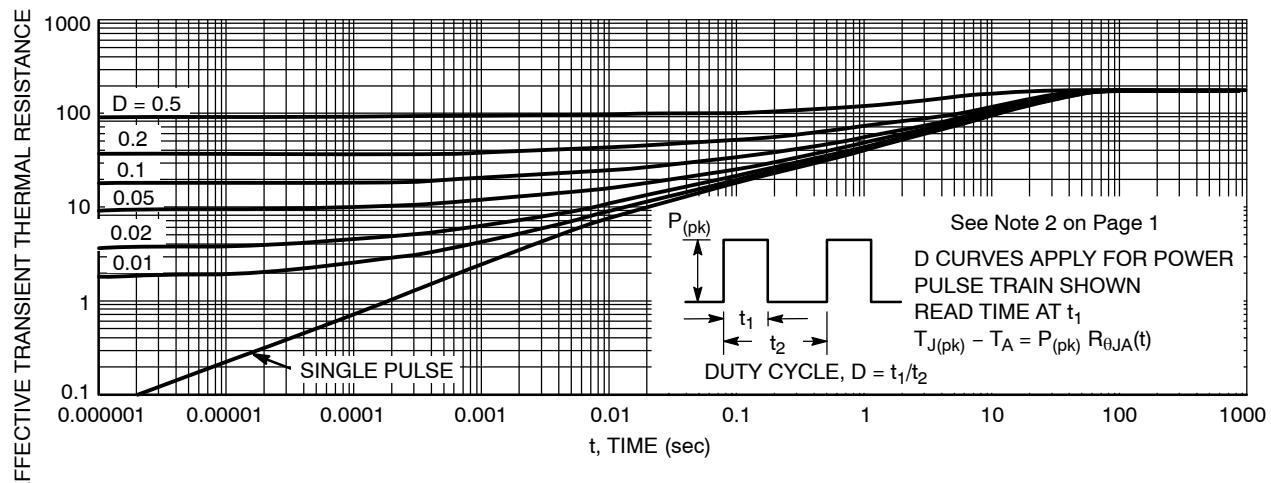
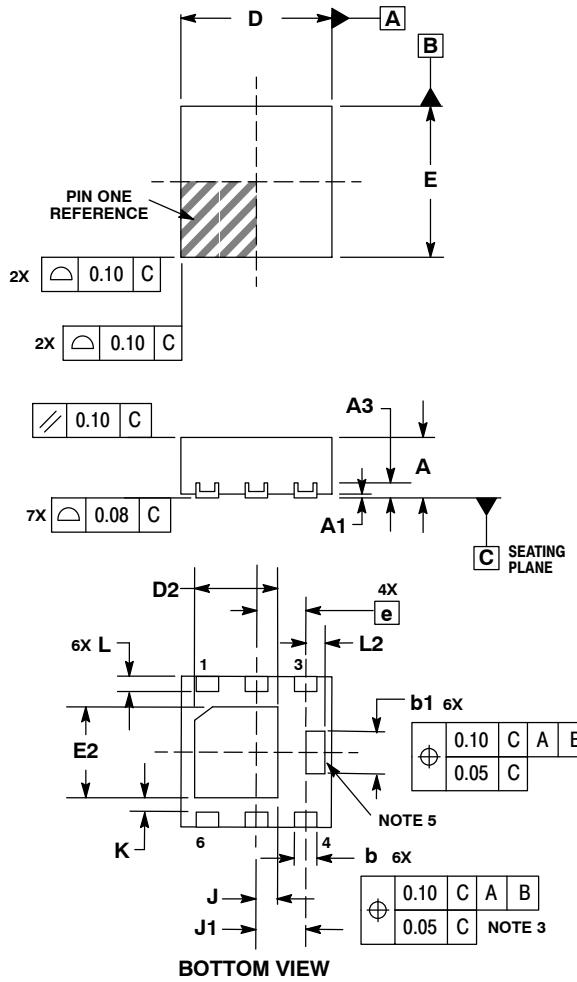
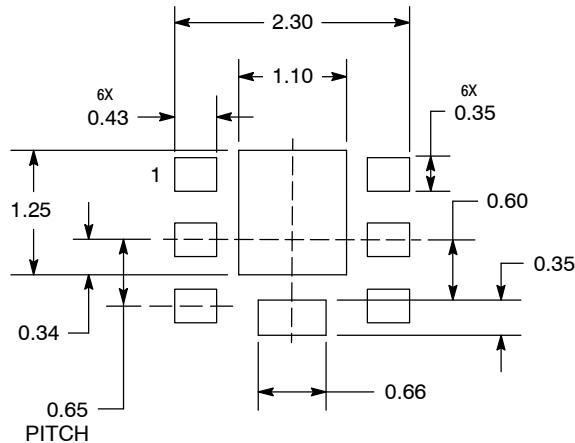



Figure 12. Thermal Response

NTLJS3180PZ

PACKAGE DIMENSIONS


WDFN6 CASE 506AP-01 ISSUE B

- NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20mm FROM TERMINAL.
 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.
 5. CENTER TERMINAL LEAD IS OPTIONAL. TERMINAL LEAD IS CONNECTED TO TERMINAL LEAD # 4.
 6. PINS 1, 2, 5 AND 6 ARE TIED TO THE FLAG.

	MILLIMETERS	
DIM	MIN	MAX
A	0.70	0.80
A1	0.00	0.05
A3	0.20 REF	
b	0.25	0.35
b1	0.51	0.61
D	2.00 BSC	
D2	1.00	1.20
E	2.00 BSC	
E2	1.10	1.30
e	0.65 BSC	
K	0.15 REF	
L	0.20	0.30
L2	0.20	0.30
J	0.27 REF	
J1	0.65 REF	

SOLDERMASK DEFINED MOUNTING FOOTPRINT

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: <http://www.onsemi.com/orderlit>
For additional information, please contact your local
Sales Representative